BrightChamps Logo
Login

Summarize this article:

Live Math Learners Count Icon109 Learners

Last updated on September 27, 2025

Derivative of cos²(2x)

Professor Greenline Explaining Math Concepts

We use the derivative of cos²(2x) to understand how this function changes in response to a slight change in x. Derivatives help us calculate profit or loss in real-life situations. We will now discuss the derivative of cos²(2x) in detail.

Derivative of cos²(2x) for US Students
Professor Greenline from BrightChamps

What is the Derivative of cos²(2x)?

We now understand the derivative of cos²(2x). It is commonly represented as d/dx (cos²(2x)) or (cos²(2x))', and its value is -4cos(2x)sin(2x). The function cos²(2x) has a clearly defined derivative, indicating it is differentiable within its domain.

 

The key concepts are mentioned below:

 

Cosine Function: (cos²(2x) = (cos(2x))²).

 

Chain Rule: Rule for differentiating composite functions like cos²(2x).

 

Product Rule: A rule used when differentiating products of functions.

Professor Greenline from BrightChamps

Derivative of cos²(2x) Formula

The derivative of cos²(2x) can be denoted as d/dx (cos²(2x)) or (cos²(2x))'.The formula we use to differentiate cos²(2x) is: d/dx (cos²(2x)) = -4cos(2x)sin(2x)

 

The formula applies to all x where cos(2x) ≠ 0.

Professor Greenline from BrightChamps

Proofs of the Derivative of cos²(2x)

We can derive the derivative of cos²(2x) using proofs. To show this, we will use trigonometric identities along with the rules of differentiation.

 

There are several methods we use to prove this, such as:

 

  • By First Principle
     
  • Using Chain Rule
     
  • Using Product Rule

 

We will now demonstrate that the differentiation of cos²(2x) results in -4cos(2x)sin(2x) using the above-mentioned methods:

 

By First Principle

 

The derivative of cos²(2x) can be proved using the First Principle, which expresses the derivative as the limit of the difference quotient. To find the derivative of cos²(2x) using the first principle, we will consider f(x) = cos²(2x). Its derivative can be expressed as the following limit. f'(x) = limₕ→₀ [f(x + h) - f(x)] / h … (1) Given that f(x) = cos²(2x), we write f(x + h) = cos²(2(x + h)). Substituting these into equation (1), f'(x) = limₕ→₀ [cos²(2(x + h)) - cos²(2x)] / h Using trigonometric identities and simplifying, we use cos²A - cos²B = (cos(A + B))(cos(A - B)) f'(x) = limₕ→₀ [(cos(2x + 2h)cos(2x - 2h))] / h Upon further simplification and using limits, f'(x) = -4cos(2x)sin(2x)

 

Using Chain Rule

 

To prove the differentiation of cos²(2x) using the chain rule, We use the formula: cos²(2x) = (cos(2x))² Let u = cos(2x) Then, cos²(2x) = u² Using the chain rule, d/dx (u²) = 2u (du/dx) Here, du/dx = -2sin(2x) Substitute back, d/dx (cos²(2x)) = 2cos(2x)(-2sin(2x)) = -4cos(2x)sin(2x)

 

Using Product Rule

 

We will now prove the derivative of cos²(2x) using the product rule. The step-by-step process is demonstrated below: Here, we use the formula, cos²(2x) = cos(2x) · cos(2x) Given that, u = cos(2x) and v = cos(2x) Using the product rule formula: d/dx [u.v] = u'.v + u.v' u' = d/dx (cos(2x)) = -2sin(2x) v' = d/dx (cos(2x)) = -2sin(2x) Using the product rule formula: d/dx (cos²(2x)) = u'.v + u.v' = (-2sin(2x))cos(2x) + cos(2x)(-2sin(2x)) = -4cos(2x)sin(2x)

Professor Greenline from BrightChamps

Higher-Order Derivatives of cos²(2x)

When a function is differentiated several times, the derivatives obtained are referred to as higher-order derivatives. Higher-order derivatives can be a little tricky. To understand them better, think of a car where the speed changes (first derivative) and the rate at which the speed changes (second derivative) also changes. Higher-order derivatives make it easier to understand functions like cos²(2x).

 

For the first derivative of a function, we write f′(x), which indicates how the function changes or its slope at a certain point. The second derivative is derived from the first derivative, which is denoted using f′′(x). Similarly, the third derivative, f′′′(x) is the result of the second derivative and this pattern continues.

 

For the nth Derivative of cos²(2x), we generally use fⁿ(x) for the nth derivative of a function f(x), which tells us the change in the rate of change (continuing for higher-order derivatives).

Professor Greenline from BrightChamps

Special Cases:

When x equals π/4, the derivative is -4cos(π/2)sin(π/2) = 0 because sin(π/2) = 0.

 

When x equals 0, the derivative of cos²(2x) = -4cos(0)sin(0) = 0.

Max Pointing Out Common Math Mistakes

Common Mistakes and How to Avoid Them in Derivatives of cos²(2x)

Students frequently make mistakes when differentiating cos²(2x). These mistakes can be resolved by understanding the proper solutions. Here are a few common mistakes and ways to solve them:

Mistake 1

Red Cross Icon Indicating Mistakes to Avoid in This Math Topic

Not simplifying the equation

Green Checkmark Icon Indicating Correct Solutions in This Math Topic

Students may forget to simplify the equation, which can lead to incomplete or incorrect results. They often skip steps and directly arrive at the result, especially when solving using the product or chain rule.

 

Ensure that each step is written in order. Students might think it is awkward, but it is important to avoid errors in the process.

Mistake 2

Red Cross Icon Indicating Mistakes to Avoid in This Math Topic

Forgetting the Domain of cos²(2x)

Green Checkmark Icon Indicating Correct Solutions in This Math Topic

They might not remember that cos²(2x) is continuous except at the points where cos(2x) = 0. Keep in mind that you should consider the domain of the function that you differentiate.

 

It will help you understand that the function is not continuous at certain points.

Mistake 3

Red Cross Icon Indicating Mistakes to Avoid in This Math Topic

Incorrect use of Chain Rule

Green Checkmark Icon Indicating Correct Solutions in This Math Topic

While differentiating functions such as cos²(2x), students may misapply the chain rule. For example: Incorrect differentiation: d/dx (cos²(2x)) = -4cos²(2x).

 

Using the chain rule correctly, the correct differentiation is: d/dx (cos²(2x)) = -4cos(2x)sin(2x). To avoid this mistake, make sure to apply the chain rule correctly by identifying inner and outer functions.

Mistake 4

Red Cross Icon Indicating Mistakes to Avoid in This Math Topic

Not writing Constants and Coefficients

Green Checkmark Icon Indicating Correct Solutions in This Math Topic

There is a common mistake that students at times forget to multiply the constants in the derivatives. For example, they incorrectly write d/dx (3cos²(2x)) = -4cos(2x)sin(2x).

 

Students should check the constants in the terms and ensure they are multiplied properly. For example, the correct equation is d/dx (3cos²(2x)) = 3(-4cos(2x)sin(2x)).

Mistake 5

Red Cross Icon Indicating Mistakes to Avoid in This Math Topic

Not Applying the Product Rule

Green Checkmark Icon Indicating Correct Solutions in This Math Topic

Students often forget to use the product rule when necessary. This happens when the derivative of the product of functions is not considered. For example: Incorrect: d/dx (cos(2x)cos(2x)) = -4cos²(2x)sin(2x).

 

To fix this error, students should separate the functions and apply the product rule. For example, d/dx (cos(2x)cos(2x)) = -4cos(2x)sin(2x).

arrow-right
Max from BrightChamps Saying "Hey"
Hey!

Examples Using the Derivative of cos²(2x)

Ray, the Character from BrightChamps Explaining Math Concepts
Max, the Girl Character from BrightChamps

Problem 1

Calculate the derivative of (cos²(2x) · sin(2x))

Ray, the Boy Character from BrightChamps Saying "Let’s Begin"
Okay, lets begin

Here, we have f(x) = cos²(2x) · sin(2x). Using the product rule, f'(x) = u′v + uv′ In the given equation, u = cos²(2x) and v = sin(2x). Let’s differentiate each term, u′ = d/dx (cos²(2x)) = -4cos(2x)sin(2x) v′ = d/dx (sin(2x)) = 2cos(2x) Substituting into the given equation, f'(x) = (-4cos(2x)sin(2x))(sin(2x)) + (cos²(2x))(2cos(2x)) Let’s simplify terms to get the final answer, f'(x) = -4cos(2x)sin²(2x) + 2cos³(2x) Thus, the derivative of the specified function is -4cos(2x)sin²(2x) + 2cos³(2x).

Explanation

We find the derivative of the given function by dividing the function into two parts.

The first step is finding its derivative and then combining them using the product rule to get the final result.

Max from BrightChamps Praising Clear Math Explanations
Well explained 👍
Max, the Girl Character from BrightChamps

Problem 2

A company's revenue is modeled by the function y = cos²(2x), where y represents revenue in thousands of dollars at time x in months. If x = 3 months, measure the rate of change of revenue.

Ray, the Boy Character from BrightChamps Saying "Let’s Begin"
Okay, lets begin

We have y = cos²(2x) (revenue model)...(1) Now, we will differentiate the equation (1) Take the derivative of cos²(2x): dy/dx = -4cos(2x)sin(2x) Given x = 3 (substitute this into the derivative) dy/dx = -4cos(6)sin(6) Using a calculator, find the values of cos(6) and sin(6) and compute. Hence, we get the rate of change of revenue at x = 3 months.

Explanation

We find the rate of change of revenue at x = 3 months by calculating the derivative at that point, which shows the change in revenue over time.

Max from BrightChamps Praising Clear Math Explanations
Well explained 👍
Max, the Girl Character from BrightChamps

Problem 3

Derive the second derivative of the function y = cos²(2x).

Ray, the Boy Character from BrightChamps Saying "Let’s Begin"
Okay, lets begin

The first step is to find the first derivative, dy/dx = -4cos(2x)sin(2x)...(1) Now we will differentiate equation (1) to get the second derivative: d²y/dx² = d/dx [-4cos(2x)sin(2x)] Here we use the product rule, d²y/dx² = -4[d/dx (cos(2x)sin(2x))] = -4[(-2sin(2x)sin(2x) + 2cos²(2x))] = 8sin²(2x) - 8cos²(2x) Therefore, the second derivative of the function y = cos²(2x) is 8sin²(2x) - 8cos²(2x).

Explanation

We use the step-by-step process, where we start with the first derivative.

Using the product rule, we differentiate the expression and then simplify the terms to find the final answer.

Max from BrightChamps Praising Clear Math Explanations
Well explained 👍
Max, the Girl Character from BrightChamps

Problem 4

Prove: d/dx (cos⁴(2x)) = -8cos³(2x)sin(2x).

Ray, the Boy Character from BrightChamps Saying "Let’s Begin"
Okay, lets begin

Let’s start using the chain rule: Consider y = cos⁴(2x) = [cos(2x)]⁴ To differentiate, we use the chain rule: dy/dx = 4[cos(2x)]³ · d/dx [cos(2x)] Since the derivative of cos(2x) is -2sin(2x), dy/dx = 4[cos(2x)]³ · (-2sin(2x)) = -8cos³(2x)sin(2x) Hence proved.

Explanation

In this step-by-step process, we used the chain rule to differentiate the equation.

Then, we replace cos(2x) with its derivative.

As a final step, we substitute y = cos⁴(2x) to derive the equation.

Max from BrightChamps Praising Clear Math Explanations
Well explained 👍
Max, the Girl Character from BrightChamps

Problem 5

Solve: d/dx (cos²(2x)/x)

Ray, the Boy Character from BrightChamps Saying "Let’s Begin"
Okay, lets begin

To differentiate the function, we use the quotient rule: d/dx (cos²(2x)/x) = (d/dx (cos²(2x)) · x - cos²(2x) · d/dx(x))/x² We will substitute d/dx (cos²(2x)) = -4cos(2x)sin(2x) and d/dx(x) = 1 = (-4cos(2x)sin(2x) · x - cos²(2x) · 1)/x² = (-4xcos(2x)sin(2x) - cos²(2x))/x² Therefore, d/dx (cos²(2x)/x) = (-4xcos(2x)sin(2x) - cos²(2x))/x²

Explanation

In this process, we differentiate the given function using the quotient rule.

As a final step, we simplify the equation to obtain the final result.

Max from BrightChamps Praising Clear Math Explanations
Well explained 👍
Ray Thinking Deeply About Math Problems

FAQs on the Derivative of cos²(2x)

1.Find the derivative of cos²(2x).

Using the chain rule for cos²(2x) gives (cos(2x))², d/dx (cos²(2x)) = -4cos(2x)sin(2x) (simplified).

Math FAQ Answers Dropdown Arrow

2.Can we use the derivative of cos²(2x) in real life?

Yes, we can use the derivative of cos²(2x) in real life in calculating the rate of change in oscillatory motions, especially in fields such as physics and engineering.

Math FAQ Answers Dropdown Arrow

3.Is it possible to take the derivative of cos²(2x) at the point where x = π/4?

Yes, at x = π/4, both cos(2x) and sin(2x) are defined, so it is possible to take the derivative at these points.

Math FAQ Answers Dropdown Arrow

4.What rule is used to differentiate cos²(2x)/x?

We use the quotient rule to differentiate cos²(2x)/x, d/dx (cos²(2x)/x) = (x · (-4cos(2x)sin(2x)) - cos²(2x) · 1)/x².

Math FAQ Answers Dropdown Arrow

5.Are the derivatives of cos²(2x) and cos²(x) the same?

No, they are different. The derivative of cos²(2x) is -4cos(2x)sin(2x), while the derivative of cos²(x) is -2cos(x)sin(x).

Math FAQ Answers Dropdown Arrow
Professor Greenline from BrightChamps

Important Glossaries for the Derivative of cos²(2x)

  • Derivative: The derivative of a function indicates how the given function changes in response to a slight change in x.

 

  • Cosine Function: A trigonometric function represented as cos(x), which is the ratio of the adjacent side to the hypotenuse in a right-angled triangle.

 

  • Chain Rule: A rule for differentiating composite functions, such as cos²(2x).

 

  • Product Rule: A rule used when differentiating products of functions.

 

  • Sine Function: A trigonometric function represented as sin(x), which is the ratio of the opposite side to the hypotenuse in a right-angled triangle.
Math Teacher Background Image
Math Teacher Image

Jaskaran Singh Saluja

About the Author

Jaskaran Singh Saluja is a math wizard with nearly three years of experience as a math teacher. His expertise is in algebra, so he can make algebra classes interesting by turning tricky equations into simple puzzles.

Max, the Girl Character from BrightChamps

Fun Fact

: He loves to play the quiz with kids through algebra to make kids love it.

INDONESIA - Axa Tower 45th floor, JL prof. Dr Satrio Kav. 18, Kel. Karet Kuningan, Kec. Setiabudi, Kota Adm. Jakarta Selatan, Prov. DKI Jakarta
INDIA - H.No. 8-2-699/1, SyNo. 346, Rd No. 12, Banjara Hills, Hyderabad, Telangana - 500034
SINGAPORE - 60 Paya Lebar Road #05-16, Paya Lebar Square, Singapore (409051)
USA - 251, Little Falls Drive, Wilmington, Delaware 19808
VIETNAM (Office 1) - Hung Vuong Building, 670 Ba Thang Hai, ward 14, district 10, Ho Chi Minh City
VIETNAM (Office 2) - 143 Nguyễn Thị Thập, Khu đô thị Him Lam, Quận 7, Thành phố Hồ Chí Minh 700000, Vietnam
UAE - BrightChamps, 8W building 5th Floor, DAFZ, Dubai, United Arab Emirates
UK - Ground floor, Redwood House, Brotherswood Court, Almondsbury Business Park, Bristol, BS32 4QW, United Kingdom